skip to main content


Search for: All records

Creators/Authors contains: "Nguyen, Thanh H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Catherine Peters (Ed.)
    Disinfectant decay by biofilms in distribution networks during stagnation can allow opportunistic pathogens' transmission and thus compromise drinking water safety. Applying phosphate-based corrosion inhibitors to the system can exacerbate disinfectant decay by providing nutrients to biofilms growing inside premise plumbings. In this study, we evaluate the impacts of corrosion inhibitors on biofilms' structural and chemical properties that form in premise plumbing, and the resulting implications for disinfectant decay. Two commonly used phosphate-based (phosphate blends and phosphate) corrosion inhibitors were added separately to simulated drinking water for biofilm development over 1 to 2 years. Optical coherence tomography (OCT) imaging showed that the studied biofilms' thickness, porosity, and porous structure did not change after exposure to free chlorine for 24 h or monochloramine for 120 h. Compared with groundwater biofilms, phosphate-based biofilms had the highest overall porosity due to their many connecting channels. The phosphate-based biofilms consumed free chlorine or monochloramine at a faster rate than groundwater biofilms. Experimental results showed that phosphate-based biofilms consumed more monochloramine after 96 h of contact than other biofilms. A separate set of experiments involving disinfectant decay with suspended biomass material, together with the OCT results, provided parameters for a simplified quasi-first-order reaction–diffusion model so that predictive modeling of decay in biofilms under stagnation conditions could be attempted without parameter fitting. The biofilm modeling results provided a close estimate for free chlorine decay while underestimating monochloramine decay. In agreement with the experimental results, the model results indicate that the phosphate-based biofilms led to slightly faster free chlorine consumption and monochloramine consumption than groundwater biofilms and indicate that diffusion limitation imposed by biofilm pore structure on disinfectant decay is important. The study results suggest that using phosphate-based corrosion inhibitors may lead to a rapid depletion of residual disinfectant during stagnation in the presence of biofilms. 
    more » « less
    Free, publicly-accessible full text available October 12, 2024
  2. Buan, Nicole R. (Ed.)
    ABSTRACT Proper disinfection of harvested food and water is critical to minimize infectious disease. Grape seed extract (GSE), a commonly used health supplement, is a mixture of plant-derived polyphenols. Polyphenols possess antimicrobial and antifungal properties, but antiviral effects are not well-known. Here we show that GSE outperformed chemical disinfectants (e.g., free chlorine and peracetic acids) in inactivating Tulane virus, a human norovirus surrogate. GSE induced virus aggregation, a process that correlated with a decrease in virus titers. This aggregation and disinfection were not reversible. Molecular docking simulations indicate that polyphenols potentially formed hydrogen bonds and strong hydrophobic interactions with specific residues in viral capsid proteins. Together, these data suggest that polyphenols physically associate with viral capsid proteins to aggregate viruses as a means to inhibit virus entry into the host cell. Plant-based polyphenols like GSE are an attractive alternative to chemical disinfectants to remove infectious viruses from water or food. IMPORTANCE Human noroviruses are major food- and waterborne pathogens, causing approximately 20% of all cases of acute gastroenteritis cases in developing and developed countries. Proper sanitation or disinfection are critical strategies to minimize human norovirus-caused disease until a reliable vaccine is created. Grape seed extract (GSE) is a mixture of plant-derived polyphenols used as a health supplement. Polyphenols are known for antimicrobial, antifungal, and antibiofilm activities, but antiviral effects are not well-known. In studies presented here, plant-derived polyphenols outperformed chemical disinfectants (i.e., free chlorine and peracetic acids) in inactivating Tulane virus, a human norovirus surrogate. Based on data from molecular assays and molecular docking simulations, the current model is that the polyphenols in GSE bind to the Tulane virus capsid, an event that triggers virion aggregation. It is thought that this aggregation prevents Tulane virus from entering host cells. 
    more » « less
  3. Elkins, Christopher A. (Ed.)
    ABSTRACT Monitoring the prevalence of SARS-CoV-2 variants is necessary to make informed public health decisions during the COVID-19 pandemic. PCR assays have received global attention, facilitating a rapid understanding of variant dynamics because they are more accessible and scalable than genome sequencing. However, as PCR assays target only a few mutations, their accuracy could be reduced when these mutations are not exclusive to the target variants. Here we introduce PRIMES, an algorithm that evaluates the sensitivity and specificity of SARS-CoV-2 variant-specific PCR assays across different geographical regions by incorporating sequences deposited in the GISAID database. Using PRIMES, we determined that the accuracy of several PCR assays decreased when applied beyond the geographic scope of the study in which the assays were developed. Subsequently, we used this tool to design Alpha and Delta variant-specific PCR assays for samples from Illinois, USA. In silico analysis using PRIMES determined the sensitivity/specificity to be 0.99/0.99 for the Alpha variant-specific PCR assay and 0.98/1.00 for the Delta variant-specific PCR assay in Illinois, respectively. We applied these two variant-specific PCR assays to six local sewage samples and determined the dominant SARS-CoV-2 variant of either the wild type, the Alpha variant, or the Delta variant. Using next-generation sequencing (NGS) of the spike (S) gene amplicons of the Delta variant-dominant samples, we found six mutations exclusive to the Delta variant (S:T19R, S:Δ156/157, S:L452R, S:T478K, S:P681R, and S:D950N). The consistency between the variant-specific PCR assays and the NGS results supports the applicability of PRIMES. IMPORTANCE Monitoring the introduction and prevalence of variants of concern (VOCs) and variants of interest (VOIs) in a community can help the local authorities make informed public health decisions. PCR assays can be designed to keep track of SARS-CoV-2 variants by measuring unique mutation markers that are exclusive to the target variants. However, the mutation markers may not be exclusive to the target variants because of regional and temporal differences in variant dynamics. We introduce PRIMES, an algorithm that enables the design of reliable PCR assays for variant detection. Because PCR is more accessible, scalable, and robust for sewage samples than sequencing technology, our findings will contribute to improving global SARS-CoV-2 variant surveillance. 
    more » « less
  4. This paper presents a framework for reasoning about trustworthiness in cyber-physical systems (CPS) that combines ontology-based reasoning and answer set programming (ASP). It introduces a formal definition of CPS and several problems related to trustworthiness of a CPS such as the problem of identification of the most vulnerable components of the system and of computing a strategy for mitigating an issue. It then shows how a combination of ontology based reasoning and ASP can be used to address the aforementioned problems. The paper concludes with a discussion of the potentials of the proposed methodologies. 
    more » « less
  5. null (Ed.)
  6. Abstract

    Otitis media (OM), known as a middle ear infection, is the leading cause of antibiotic prescriptions for children. With wide-spread use of antibiotics in OM, resistance to antibiotics continues to decrease the efficacy of the treatment. Furthermore, as the presence of a middle ear biofilm has contributed to this reduced susceptibility to antimicrobials, effective interventions are necessary. A miniaturized 3D-printed microplasma jet array has been developed to inactivatePseudomonas aeruginosa, a common bacterial strain associated with OM. The experiments demonstrate the disruption of planktonic and biofilmP. aeruginosaby long-lived molecular species generated by microplasma, as well as the synergy of combining microplasma treatment with antibiotic therapy. In addition, a middle ear phantom model was developed with an excised rat eardrum to investigate the antimicrobial effects of microplasma on bacteria located behind the eardrum, as in a patient-relevant setup. These results suggest the potential for microplasma as a new treatment paradigm for OM.

     
    more » « less